ELSEVIER

Available online at www.sciencedirect.com

science (hoinzer:

Tetrahedron
Letters

Tetrahedron Letters 47 (2006) 2887-2891

Synthesis, structure, and both cathodic and anodic
reversible redox reactions of benzochalcogenophenes
containing ferrocene units

Satoshi Ogawa,” Kenji Kikuta, Hiroki Muraoka, Fumihito Saito and Ryu Sato*

Department of Chemical Engineering, Faculty of Engineering, Iwate University, Morioka 020-8551, Japan

Received 2 February 2006; revised 17 February 2006; accepted 21 February 2006
Available online 9 March 2006

Abstract—?2,3-Diferrocenylbenzo[b]thiophene and 1,3-diferrocenylbenzo[c]thiophene have been systematically and selectively syn-
thesized from benzo[b]thiophene and phthaloyl dichloride, respectively. Characterization of the molecules was performed by physi-
cal and spectroscopic means and X-ray crystallographic analyses. The cyclic voltammograms of the novel thiophene derivatives
containing ferrocene fragments showed a well-defined reversible cathodic step derived from the unusually stable thiophene radical
anions and two distinct reversible anodic steps derived from ferrocenium cations separated from each other by a thiophene hetero-
cycle. 1,3-Diferrocenylbenzo[c]selenophene was also synthesized in a similar manner for formation of 1,3-diferrocenylbenzo[c]thio-
phene by the use of bis(dimethylaluminum) selenide as a selenating reagent.

© 2006 Elsevier Ltd. All rights reserved.

In recent years, molecules comprising multiple reduc-
tion—oxidation (redox) centers have been attracting
attention in the field of material science due to the
potentiality of new organic semi-conducting materials
with application.! Moreover, this kind of molecule hav-
ing more than two redox-active metal centers is a funda-
mentally attractive target for the study of multi-electron
transfer processes via the mixed valence state derived
from these multi-metallic systems.> On the other hand,
interest in the design of novel redox-active organic cen-
ters by the use of a 7r electron framework? containing
group 16 elements has led us to explore the synthesis
of new five-membered heterocycles containing sulfur
and/or selenium atom(s). This time our studies are
aimed at the design of reversible multi-steps redox sys-
tems using simple molecules with both organic and orga-
nometallic electron transfer fragments. Although the
synthesis and characterization of substituted benzochal-
cogenophenes have been reported,* there is no report
concerning benzannulated thiophene and selenophene
containing a ferrocene fragment on the five-membered
heterocyclic unit, which are of structural and redox
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characteristic interest, in contrast to benzannulated
chalcogenophene, namely, 1,3-dithienylbenzo[c]thio-
phene and -selenophene.” Recently, we reported a new
type of multi-steps reversible redox systems using
organic—-organometallic hybrid molecules, 1-ferrocenyl-
and 1,9-diferrocenyl-thianthrenes.® Therefore, we have
designed 2,3-diferrocenylbenzo[b]thiophene, 1,3-diferro-
cenylbenzo[c]chalcogenophenes as both cathodic and
anodic multiple-redox active organic—organometallic
hybrid molecules. In this letter, we provide the details
on the synthesis, structural characterization, and elec-
trochemical properties of 2,3-diferrocenylbenzo[b]thio-
phene, 1,3-diferrocenylbenzo[c]thiophene, and 1,3-
diferrocenylbenzo[c]selenophene.

The synthesis of 2,3-diferrocenylbenzo[b]thiophene (1)
was achieved through the transition metal-catalyzed
cross-coupling reaction’ of 2,3-dibromobenzo[b]thio-
phene, which was prepared by general bromination with
bromine,® with ferrocenylzinc chloride in the presence of
a catalytic amount of bis(triphenylphophine)palla-
dium(II) dichloride, (PPh;3),PdCl,, in tetrahydrofuran
(THF) under reflux condition (Scheme 1). On the other
hand, we employed phthaloyl dichloride as a starting
material for the synthesis of 1,3-diferrocenylbenzo|[c]thio-
phene (2). However, two acid chlorides in the ortho po-
sition are too reactive toward nucleophilic substitution
by the use of Grignard or organolithium reagents even
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at low temperature. Therefore, we synthesized 1,2-di[S-
(2-pyridinyl)Jbenzenedithioate which has two functional
groups with lower reactivity as compared with phthaloyl
dichloride by the modified method previously reported.’
Since we obtained 1,2-di[S-(2-pyridinyl)]benzenedithio-
ate, the next step consisted of performing the reaction
with a ferrocenyllithium reagent. The ferrocenyllithium,
which was prepared from ferrocene with z-butyllithium,
was slowly added at —60°C to 1,2-di[S-(2-pyridin-
yl)Jbenzenedithioate in a solution of THF. The mixture
was stirred at —60 °C for 30 min and finally quenched
by addition of 2 mol dm > HCI aqueous solution. After
usual work-up, ortho diferrocenoylbenzene was ob-
tained in moderate yield. Finally, the isothianaphthene
core was formed through ring closure of ortho diferroce-
noylbenzene by means of Lawesson’s reagent to give
1,3-diferrocenylbenzo[c]thiophene (2) in moderate yield
(Scheme 2). In the case of the synthesis of 1,3-
diferrocenylbenzo[c]selenophene (3), the ring—closure
reaction was performed by the use of bis(dimethylalumi-
num) selenide developed by Segi and Zingaro! as a
selenating reagent.

Structural characterization of new benzothiophenes 1, 2,
and benzoselenophene 3 was performed by physical and
spectroscopic means.'! In addition, single crystals of 1-3
were successfully obtained by slow crystallization from
effectual organic solvents at room temperature. The
crystal structures of 1'? (Fig. 1), 2'* (Fig. 2), and 3'#
(Fig. 3) were determined by X-ray crystallographic anal-
yses and revealed that two ferrocene fragments were
located in anti-conformation, respectively, having the
dihedral angles of 34.3(5) and 42.3(4)° for 1, —23.7(2)

Figure 1. ORTEP drawing of compound 1. Dichloromethane molecule
is omitted for clarity. Thermal ellipsoids are drawn at 50% probability.
Selected bond distances (A), bond angles (°), and dihedral angles (°):
S1-C2 1.760(4), C2-C3 1.355(4), C3-C4 1.451(5), C4-C5 1.404(5), C5-
S11.735(3), C2-C6 1.458(4), C3-C8 1.490(5), S1-C2-C3 112.5(3), C2—
C3-C4 113.0(3), C3-C4-C5 111.3(2), C4-C5-S1 112.2(2), C5-S1-C2
91.0(2), C8-C3-C2 122.3(3), C6-C2-C3 130.3(3), C7-C6-C2-C3
34.3(5), C2-C3-C8-C9 42.3(4), C6-C2-C3-C8 4.8(5).

and +30.0(2)° for 2, —21.9(5) and +30.1(5)° for 3. The
C-C distances between the ferrocenyl carbon and the
carbon(s) next to thienyl sulfur suggest a double bond
character because the lengths of 1.458(4) A for 1,
1.461(2) and 1.461(2) A for 2, 1.451(6) and 1.447(5) A
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Figure 2. ORTEP drawing of compound 2. Thermal ellipsoids are
drawn at 50% probability. Selected bond distances (A), bond angles
(°), and dihedral angles (°): S1-C2 1.720(2), C2-C3 1.393(2), C3-C4
1.443(2), C4-C5 1.390(2), C5-S1 1.714(2), C2-C6 1.461(2), C5-C8
1.461(2), SI-C2-C3 110.2(1), C2-C3-C4 112.4(2), C3-C4-C5 112.9(1),
C4-C5-S1 110.3(1), C5-S1-C2 94.16(8), S1-C2-C6-C7 —23.7(2), C9-
C8-C5-S1 30.0(2).

Figure 3. ORTEP drawing of compound 3. Thermal ellipsoids are
drawn at 50% probability. Selected bond distances (A), bond angles
(°), and dihedral angles (°): Sel-C2 1.867(4), C2-C3 1.381(5), C3-C4
1.456(5), C4-C5 1.386(5), C5-Sel 1.862(4), C2-C6 1.447(5), C5-C8
1.451(6), C5-Sel-C2 89.8(4), Sel-C2-C3 109.9(3), C2-C3-C4
115.3(3), C3—-C4-C5 115.0(3), C4-C5-Sel 110.0(3), C9-C8-C5-Sel
—21.9(5), Sel-C2-C6-C7 30.1(5).

for 3 are significantly shorter than that of the sp*—sp>
single bond (1.516 A)."

The redox properties of chalcogenophene—ferrocene sys-
tems have been furnished by electrochemical measure-
ments; the data are collected in Table 1 and cyclic
voltammograms (CV) of compounds 1-3 are shown in
Figure 4. The dominant feature of CV scans of 1-3 at
concentrations 2.0 mmol dm > in THF/0.1 mol dm*
"BuyNPFg is three one-electron redox couples, E ;=
—2.87, +0.22, +0.41V for 1; —2.38, +0.14, +0.34 V
for 2; —2.31, +0.15, +0.39 V for 3; versus Ag/Ag+,
respectively, that is well-defined reversibility. At nega-
tive scan, the reduction of 1-3 is electrochemically
reversible and a cathodic product wave appears, as-
signed to formation of the corresponding radical anion.
On the other hand, at positive scan, the oxidation of
1-3 is also electrochemically reversible and two anodic
product waves appear, assigned to stepwise formation
of the corresponding mono- and bis-(ferrocenium
cation).
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Figure 4. Cyclic voltammograms of 1 (a), 2 (b), and 3 (c).

Table 1. Redox potentials (V vs Ag/Ag")* of diferrocenylbenzochalcogenophene 1, 2, and 3

1 2 3
First Second Third First Second Third First Second Third
Ep, -2.71 +0.38 +0.56 -2.31 +0.21 +0.41 -2.19 +0.27 +0.51
Ey. -3.02 +0.06 +0.25 -2.45 +0.07 +0.27 —-2.42 +0.02 +0.26
Eyp -2.87 +0.22 +0.41 —2.38 +0.14 +0.34 —2.31 +0.15 +0.39

2 Conditions: concentration, 2 mmol dm > sample in 0.1 mol dm~3 [Bu4N]+[PFf,]’/THF solution; temperature, 223 K for 1, 293 K for 2, 233 K for 3;
working electrode, glassy-carbon; reference electrode, Ag/0.01 mol dm > AgNO; in 0.1 mol dm~3 [BusNJ'[PFs] /CH;CN solution; counter elec-

trode, Pt; scan rate, 200 mV s~! for 1, and 100 mV s~! for 2 and 3.
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Figure 5. Cyclic (top) and differential pulse (bottom) voltammograms of 1 (a), 2 (b), and 3 (c).

By CV and differential pulse voltammograms (DPV)
measurements of 1-3 employing dichloromethane
(CH,Cl,) as a solvent, the oxidation waves derived from
the ferrocene fragments showed good separated and
well-defined reversible one-electron redox couples
(Fig. 5).%2 The differences between the first and second
half-potentials (AE,, = E|,, — E} ;) for the Fe(Il)-
Fe(III) and Fe(IIT)-Fe(III) couples of 1, 2, and 3 were
192, 280, and 305 mV, respectively (Table 2). These
results suggest that the structural difference between
diferrocenylbenzothiophenes 1 and 2 based on the annu-
lation mode and the substituent position should cause
the differences in their redox behavior and thermo-
dynamic stability in mixed-valence intermediates. The
comproportionation constants (K.)** for the Fe(Il)-
Fe(Ill) mixed-valence state estimated from AFE),, were
1.1 x 10° for 2 and 3.0 x 10> for 3. Therefore, the elec-
tronic interaction between the metal center of ferrocene
and the ferrocenium cation in the mixed-valence state of
2 and 3 can be expected to be strong because of potential
through-bond and/or through-space interactions. In the
case of compound 1, it is difficult to discuss the compro-
portionation constant K., because it has essentially dif-
ferent oxidation potentials based on the position of
ferrocenes.

In conclusion, we have synthesized and characterized
novel benzochalcogenophenes containing ferrocene
units. The electrochemical properties showed reversible
multi-electron transfer phenomena assigned to chalco-
genophene (organic) and ferrocene (organometallic)
fragments owing to good stability of the negative-
charged reduction products (radical anions) and posi-

Table 2. Redox potentials (V vs Ag/Ag")* of 1, 2, and 3

El, (V) Ei, (V) AE,;,° (mV)
1 +0.21 +0.40 +192
2 +0.13 +0.41 +280
3 +0.12 +0.42 +305

2 Conditions: concentration, 1 mmol dm~> sample in 0.1 mol dm—>

[BusNT [PF¢] /CH,Cl, solution; temperature, 281 K; working elec-
trode, glassy-carbon; reference electrode, Ag/0.01 mol dm~> AgNO;
in 0.1 mol dm—* [BuyNJ'[PF4]/CH;CN solution; counter electrode,
Pt; scan rate, 100 mV s .

bAEI/Z = E%/z - E}/z-

tive-charged oxidation products (mono- and bis-ferro-
cenium cations). Therefore, we succeeded in establishing
a new type of multi-steps reversible redox systems using
neutral organic-organometallic hybrid molecules.
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